

# 基于"耦合-耦合-吸收"机理的超宽带单模单偏振 微结构光纤

赵畅<sup>1,3</sup>,李积鹏<sup>2</sup>,杨宏达<sup>1,3</sup>,杨慢<sup>1,3</sup>,杨骐豪<sup>1,3</sup>,侯蓝田<sup>1,3</sup>,王伟<sup>1,3\*</sup> <sup>1</sup>燕山大学信息科学与工程学院,河北秦皇岛 066004; <sup>2</sup>石家庄职业技术学院电气与电子工程系,河北 石家庄 050081; <sup>3</sup>河北省特种光纤与光纤传感重点实验室,河北秦皇岛 066004

**摘要** 通过在高双折射微结构光纤包层构建缺陷并在其外侧空气孔镀金的方法,实现一种基于"耦合-耦合-吸收"滤波机 理的新型单模单偏振微结构光纤(SMSP-MSF)。纤芯中需要滤除的偏振态模式能量通过"纤芯与缺陷芯耦合"和"缺陷 芯与金缺陷耦合"两次耦合作用传递至镀金孔中,再利用金缺陷的等离子体共振效应对能量进行吸收,以实现宽带的单 模单偏振传输。基于上述机理,利用全矢量有限元法,得到了两种宽带 SMSP-MSF。所设计的正六边形晶格 SMSP-MSF 的纤芯*x*偏振模式与缺陷芯模式、金层二阶表面等离子极化激元模式在多个波长分别谐振,实现 380 nm 的单模单偏 振传输带宽。所设计的正方形晶格 SMSP-MSF 利用纤芯及缺陷芯相互垂直的排布方式,保证了纤芯与缺陷芯*x*偏振模 式耦合,而*y*偏振模式不耦合,在1.55 μm 处实现了偏振消光比高达113 dB 的高质量单模单偏振传输。 关键词 光纤光学;微结构光纤;单模单偏振;模式耦合;表面等离子体共振;偏振消光比

**中图分类号** TN252 文献标志码 A

#### **DOI:** 10.3788/AOS221321

## 1引言

单模单偏振(SMSP)光纤<sup>[1]</sup>仅传输基模的一个偏 振态,可以有效地减小偏振串扰、偏振相关损耗和偏振 模色散等,大幅提升光通信系统的速率和稳定性。对 于传统阶跃光纤,利用通过在纤芯周围施加应力<sup>[1-2]</sup>分 离两偏振模式的截止波长的方法,使其中一个偏振模 式在特定波长截止,从而实现单模单偏振特性。微结 构光纤(MSF)<sup>[3]</sup>含有很多微孔结构,通过灵活设计其 结构,可以得到许多优良特性。通过降低MSF结构的 对称性、引入双折射,使其中一个偏振模式与包层的空 气填充基模耦合,滤除此偏振模式<sup>[4]</sup>,可以得到单模单 偏振微结构光纤(SMSP-MSF)<sup>[5]</sup>。但是,基于此原理 的SMSP-MSF的损耗比*Γ*和偏振消光比(PER)都比 较低。

为了解决上述问题, 耿鹏程等<sup>[6]</sup>在包层中构建缺 陷区, 利用包层缺陷模式与纤芯偏振模式的耦合, 将芯 区不需要的偏振模式的能量耦合到包层缺陷区以构建 SMSP-MSF。2007年, 刘小毅等<sup>[7]</sup>在中央纤芯两侧对 称设计两个圆形高损耗孔, 提出了一种基于谐振吸收 效应的 SMSP-MSF。2010年, Chen 等<sup>[8]</sup>在正方形排 布的空气孔的基础上,忽略芯区两侧x方向上包层内 的两个空气孔形成包层缺陷区,形成了相互垂直的芯 区和包层缺陷区,在1.477~1.776 um 波长范围内实 现了单偏振传输。2011年,Lee等<sup>[9]</sup>在包层区域中通 过减小空气孔的直径,引入关于x轴对称的两个缺陷, 获得了工作带宽大于150 nm 且损耗比大于100 的 SMSP-MSF。2012年,Geng等<sup>[10]</sup>通过减小包层第4层 6个顶点处的空气孔直径构成缺陷区,利用缺陷模与 纤芯基模的耦合,在1.25~1.65 μm 波长范围内实现 了单模单偏振传输。2016年,李珊珊等<sup>[11]</sup>通过在包层 空气孔中填充折射率匹配液,引入缺陷模式,通过调整 液体折射率可以分别实现芯模x、y偏振模式的低损耗 传输。2020年, Yang等<sup>[12]</sup>在纤芯周围的4个大空气孔 内添加介电常数趋于零的材料,得到了工作带宽为 0.53 THz、所需要的模式与被滤除模式损耗差大于 7.4 dB/cm 的 SMSP-MSF。2021年, Liu 等<sup>[13]</sup>在空芯 反谐振微结构光纤的上方半圆形包层管中涂覆负介电 常数材料,设计了一种 SMSP-MSF,其在 1408~ 1676 nm 和 1680~1700 nm 两个带宽范围内具有 40 dB/m 的损耗差,经优化设计后,其在1452~ 1620 nm 带宽范围内具有 100 dB/m 的损耗差。

收稿日期: 2022-06-15; 修回日期: 2022-07-12; 录用日期: 2022-07-21; 网络首发日期: 2022-07-31

**基金项目**:河北省自然科学基金(F2021203002)、河北省专业学位教学案例(库)立项建设项目(KCJSZ2021028)、河北省在读 研究生创新能力培养资助项目(CXZZSS2022131)

通信作者: \*wangwei@ysu.edu.cn

但是上述方案均是通过"耦合+泄漏"的方式滤除 不需要的偏振模式,即将芯区不需要的偏振模式的能 量耦合到包层缺陷区后,再通过多孔包层的泄漏释放 耦合到包层缺陷区的能量。此类光纤的最终性能受到 光纤空气孔层数的限制:当光纤空气孔层数减少时,虽 然需要滤除的偏振模式的损耗会增大,但是需要保留 的偏振模式的损耗也随之增大,这不利于单模单偏振 传输;反之,当光纤空气孔层数增加时,需要保留的偏 振模式的损耗降低,但需要滤除的偏振模式损耗也会 降低,这不利于滤除此偏振模式。因此,这种方案存在 着降低传输损耗和滤除模式在空气孔层数上的选择 矛盾。

本文在包层缺陷区外部添加镀金孔,利用金层表 面等离子极化激元(SPP)模式<sup>[14]</sup>吸收需要滤除的偏振 模式能量,得到了一类融合耦合模机理<sup>[15]</sup>与表面等离 子体共振(SPR)效应<sup>[16]</sup>的新型SMSP-MSF。通过"纤 芯与缺陷芯耦合"和"缺陷芯与金缺陷耦合"两次耦合 的能量传递,利用金缺陷具有的SPR效应对能量的强 吸收作用,构建基于"耦合-耦合-吸收"滤波机理的 SMSP-MSF,解决了以前的SMSP-MSF降低传输损 耗与滤除模式都受空气孔层数限制的问题。与其他设 计相比,本文设计的SMSP-MSF的两偏振模式之间具 有更大的损耗差及更好的单模单偏振传输特性,可以 在高功率光纤激光器、光纤陀螺、光纤起偏器和相干光 通信系统等传输和传感领域<sup>[17-18]</sup>得到广泛应用。

## 2 基本理论

采用基于完美匹配层(PML)的全矢量有限元法 (FEM)对所提出的SMSP-MSF进行性能分析。由于 MSF大多采用纯石英玻璃和空气孔的结构,在研究其 特性时,综合考虑其材料色散,其折射率常采用 Sellmeier方程<sup>[16]</sup>来进行计算:

$$n_{\text{silica}} = \sqrt{1 + \sum_{j=1}^{m} \frac{B_j \lambda^2}{\lambda^2 - \lambda_j^2}}, \qquad (1)$$

式中:m=3;  $\lambda$  为波长,  $\lambda_1=0.06840430$  µm,  $\lambda_2=0.11624143$  µm,  $\lambda_3=9.89616100$  µm; $B_1=0.6961663$ ,  $B_2=0.4079426$ ,  $B_3=0.8974794_{\circ}$ 

金的介电常数 cgold 由 Drude-Lorentz<sup>[16]</sup>模型计算:

$$\epsilon_{\text{gold}} = \epsilon_{\infty} - \frac{\omega_{\text{D}}^2}{\omega(\omega + \mathrm{i}\gamma_{\text{D}})} - \frac{\Omega_{\text{L}}^2 \Delta \epsilon}{(\omega^2 - \Omega_{\text{L}}^2) + \mathrm{i}\Gamma_{\text{L}}\omega}, (2)$$

式中: $\omega$ 为导波的角频率; $\epsilon_{\infty}$ =5.9673; $\Delta \epsilon$ =1.09;  $\omega_{\rm D}=2\pi \times 2113.6$  THz; $\gamma_{\rm D}=2\pi \times 15.92$  THz; $\Omega_{\rm L}=2\pi \times 15.92$  THz; $\Gamma_{\rm L}=2\pi \times 104.86$  THz。

基于纤芯偏振态模式的有效模式折射率 n<sub>PCM</sub>,限制损耗 α<sub>PCM</sub><sup>[16]</sup>可以通过有效模式折射率的虚部 Im(n<sub>PCM</sub>)得到:

$$\alpha_{\rm PCM} = \frac{2 \times \pi \times 8.686 \times {\rm Im}(n_{\rm PCM})}{\lambda}_{\circ} \qquad (3)$$

#### 第 43 卷 第 2 期/2023 年 1 月/光学学报

理论上,SMSP-MSF中仅支持一个偏振模式传输。但是,在实际的SMSP-MSF中,两种偏振模式是 共存的。因此,通常利用损耗比 Γ<sup>[9]</sup>来评价SMSP-MSF的性能,其定义为

$$\Gamma = \frac{\alpha_{\rm PCM}^{(x)}}{\alpha_{\rm PCM}^{(y)}},\tag{4}$$

式中: $\alpha_{PCM}^{(x)}$ 和 $\alpha_{PCM}^{(y)}$ 分别为x偏振模式和y偏振模式的限制损耗。

除此之外,光纤长度为1m时的偏振消光比 $R_{PE}^{[16]}$ 也可评价SMSP-MSF的性能,其定义为

$$R_{\rm PE} = \left[ \alpha_{\rm PCM}^{(x)} - \alpha_{\rm PCM}^{(y)} \right] \times 1_{\circ} \tag{5}$$

## 3 数值结果与分析

## 3.1 一种正六边形晶格结构宽带 SMSP-MSF

基于"耦合-耦合-吸收"滤波机理,本文提出了如 图 1 所示的正六边形晶格结构的宽带 SMSP-MSF。 在图 1 所示的光纤横截面中,空气孔采用正六边形排 布,其中,相邻空气孔间距为 $\Lambda$ ,包层空气孔直径为d。 纤芯是由忽略光纤中心的 1 个空气孔并且沿x轴两侧 设置 2 个大空气孔构成,其中,大空气孔的直径为 $d_{000}$ 在包围纤芯的第4层六边形多孔结构的6条边的中点 位置分别设置直径为 $d_i(i=1,2,\cdots,6)$ 的6个小空气 孔,这6个小空气孔与其周围石英玻璃构成6个缺陷 芯。在2个大空气孔周围分布着4个直径为 $d_j(j=7,$ 8,9,10)的小空气孔,同时,在6个缺陷芯外侧引入6个 $直径为<math>d_k(k=11,12,\cdots,16)$ 的镀金孔,其中,金层厚度 为t,镀金孔与纤芯之间的距离均为 $l_o$ 



图 1 一种正六边形晶格结构宽带 SMSP-MSF 横截面示意图 Fig. 1 Cross-section of broadband SMSP-MSF with regular hexagonal lattice

设置图 1 所示的光纤横截面的初始结构参数为:  $d=2.5 \mu m, \Lambda=5 \mu m, d_0=6.300 \mu m, d_1=1.612 \mu m,$  $d_2=1.634 \mu m, d_3=1.674 \mu m, d_4=1.694 \mu m, d_5=$ 1.718  $\mu m, d_6=1.740 \mu m, d_7=1.720 \mu m, d_8=$ 1.760 m,  $d_9=1.800 \mu m, d_{10}=1.840 \mu m, l=25.98 \mu m_0$ 此时, 纤芯 x 偏振模式首先与缺陷芯模式发生耦合, 使

纤芯 x 方向的能量泄漏到缺陷芯中。基于 SPR 效应, 缺陷芯模式又与金层 SPP 模式耦合,利用其对光能量 的强吸收作用,进一步增大纤芯 x 偏振模式的限制损 耗。最终,在O+E+S+C+L+U 波段的1.320  $\mu$ m、 1.388  $\mu$ m、1.440  $\mu$ m、1.490  $\mu$ m、1.570  $\mu$ m 和 1.640  $\mu$ m 6个波长处,纤芯 x 偏振模式、缺陷芯模式与 SPP 模式发生耦合。同时,由于纤芯具有双折射(两个 偏振模式存在很大的折射率差),而缺陷芯不具有双折 射,因此,纤芯 y 偏振模式不会与缺陷芯模式耦合,保 证其能量会被限制在纤芯中,纤芯 y 偏振模式可实现 宽带低损耗传输。

下面分析图1所示 SMSP-MSF 的单模单偏振特

#### 第 43 卷 第 2 期/2023 年 1 月/光学学报

性。由于金的材料折射率高,金层零阶和一阶 SPP模 式折射率明显大于缺陷芯模式折射率,无法与缺陷芯 模式折射率匹配,故下面研究镀金孔参数对金层二阶 SPP模式(以下称 SPP模式)的影响。同时,被缺陷芯 模式激发的 SPP模式随镀金孔参数变化的规律相同, 且单个缺陷芯模式不会受到其他缺陷芯的影响。因 此,本文重点研究了单个镀金孔的直径 d<sub>11</sub>和金层厚度 t对 SPP模式耦合波长和纤芯 x 偏振模式限制损耗的 影响。

首先分析金层厚度不变(t=30 nm)时镀金孔直径  $d_{11}$ 对SPP模式耦合波长和纤芯x偏振模式限制损耗的 影响,其结果如图2和图3所示。



图 2 不同 d<sub>11</sub>下,各模式折射率实部随波长的变化。(a)SPP模式折射率实部随 d<sub>11</sub>的变化;(b) d<sub>11</sub>=1.07 μm、(c) 1.17 μm、 (d) 1.37 μm 时,纤芯 x 偏振模式、缺陷芯模式与SPP模式折射率实部随波长的变化

Fig. 2 Real part of refractive index for each mode at different  $d_{11}$ . (a) Real part of refractive index for SPP mode varying with  $d_{11}$ ; real part of refractive index for *x*-polarized mode, defect core mode, and SPP mode varying with wavelength at (b)  $d_{11}$ =1.07 µm, (c)  $d_{11}$ =1.17 µm, and (d)  $d_{11}$ =1.37 µm

如图 2(a) 所示,随着镀金孔直径的增大,金层发 生 SPR效应的面积增大,缺陷芯与金层之间的 SPR效 应增强,最终 SPP模式折射率逐渐增大。由图 2(b)可 知,当 d<sub>11</sub>=1.07 μm 时,在 1.25~1.35 μm 波长范围 内,SPP模式折射率始终小于纤芯 x 偏振模式和缺陷 芯模式折射率,此时,纤芯 x 偏振模式与缺陷芯模式会 发生耦合,但是 SPP模式与缺陷芯模式间的耦合较 弱。由图 2(c)可知,当 d<sub>11</sub>=1.17 μm 时,纤芯 x 偏振模 式、缺陷芯模式与 SPP模式折射率随波长红移的变化 曲线相交于同一个波长,纤芯x偏振模式的能量会与 缺陷芯模式能量发生交换,之后,缺陷芯模式与SPP 模式发生耦合,其能量被金层吸收。同时,由于镀金孔 直径较小,缺陷芯中的能量并不能完全被金层吸收,还 会有一部分能量通过石英通道泄漏。当 $d_{11}>1.17$  µm 时,三条模式折射率随波长红移的变化曲线不会交于 同一波长。由图 2(d)可知,当 $d_{11}=1.37$  µm 时,在纤 芯x偏振模式与缺陷芯模式的耦合波长处,SPP模式 折射率大于缺陷芯模式折射率。



图3 不同d<sub>11</sub>对x偏振模式限制损耗的影响

Fig. 3 Influence of  $d_{11}$  on confinement loss of x-polarized mode

由图 3 可知,随着镀金孔直径  $d_{11}$ 的增大,纤芯 x 偏振模式在耦合波长处的限制损耗先增大后减小,在  $d_{11}=1.27$  µm 时损耗最大。这是因为:当 $d_{11}$ 为 1.07 µm和1.12 µm 时,缺陷芯模式并未完全激发金 第 43 卷 第 2 期/2023 年 1 月/光学学报

层能量,SPR效应弱,SPP模式与缺陷芯模式的折射率 相差较大,耦合强度弱,大部分能量仍通过石英通道泄 漏。当 $d_{11}$ 为1.17  $\mu$ m、1.22  $\mu$ m、1.27  $\mu$ m时,由于镀金 孔的增大,金层发生 SPR效应的面积增大,并且在耦 合波长处 SPP模式折射率与缺陷芯模式折射率的差 距极小,因此,SPP模式被激发,SPR效应逐渐增强。 同时,由于包层石英通道的泄漏作用,纤芯*x*偏振模式 的限制损耗不断增大。当 $d_{11}$ =1.32  $\mu$ m和 $d_{11}$ = 1.37  $\mu$ m时,在缺陷芯模式与*x*偏振模式的耦合波长 处,SPP模式折射率大于缺陷芯模式折射率,缺陷芯模 式与 SPP模式的耦合强度减弱。同时,镀金孔的增大 对缺陷芯能量的泄漏起到阻挡作用,纤芯*x*偏振模式在 耦合波长处的限制损耗减小。此外,镀金孔 $d_{11}$ 的增大 还会影响损耗峰的位置,使损耗峰先红移后蓝移。

接着计算镀金孔直径不变( $d_{11}$ =1.17  $\mu$ m)时金层 厚度 t 对 SPP 模式耦合波长和纤芯 x 偏振模式限制损 耗的影响,其结果如图 4 和图 5 所示。



图 4 不同 *t*下各模式折射率实部随波长的变化。(a) SPP模式折射率实部随 *t* 的变化;(b) *t*=18 nm、(c) *t*=30 nm、(d) *t*=42 nm 时 纤芯 *x* 偏振模式、缺陷芯模式与 SPP模式折射率实部随波长的变化

Fig. 4 Real part of refractive index for each mode varying with wavelength at different t. (a) Real part of refractive index for SPP mode varying with t; real part of refractive index for x-polarized mode, defect core mode, and SPP mode varying with wavelength at (b) t=18 nm, (c) t=30 nm, and (d) t=42 nm

如图 4(a) 所示,随着金层厚度的增大,SPP 模式 折射率减小,但是,同一波长下 SPP 模式折射率的差 值较小。由图 4(b)可知,当 t=18 nm时,在纤芯 x 偏振 模式与缺陷芯模式的耦合波长附近,SPP 模式折射率 始终大于缺陷芯模式折射率。由图4(c)可知,当t= 30 nm时,纤芯x偏振模式、缺陷芯模式与SPP模式折 射率随波长红移的变化曲线相交于同一波长处,会发 生两次模式耦合,再利用金层对光能量的强吸收作用





滤除纤芯x偏振模式。由图4(d)可知,当t=42 nm时, 在纤芯x偏振模式与缺陷芯模式的耦合波长附近, SPP模式折射率略小于缺陷芯模式折射率。

由图 5可知,随着金层厚度 t的增大,纤芯 x 偏振 模式在耦合波长处的限制损耗先增大后减小。当 t为 18 nm、21 nm、24 nm 时,纤芯 x 偏振模式在耦合波长 处的限制损耗逐渐增大,在 t=24 nm 时达到最大。随 着金层厚度从 27 nm 增加至 42 nm,纤芯 x 偏振模式的 限制损耗的峰值减小,这是由于:随着金层厚度 t的增 大,当金层厚度大于电场的穿透深度时,会出现相位的 延迟效应。根据 Mie 和 Drude 的理论,相位延迟效应 会导致吸收峰的改变。金层内载流子数量随着金层厚 度的增加而增加,参与表面等离子体共振的自由电子 增加,从而使得能量增加。但是,随着金层厚度的加 大,相位延迟效应逐渐明显,参与集体振荡的自由电子 减少,这种相位延迟效应影响大于金属自由电子增多 的影响时会导致 SPR 效应减弱,限制损耗峰值降低。 同时,金层厚度 t的增大还影响了损耗峰值的位置,使 损耗峰先红移后蓝移。

综合考虑光纤各参数对光纤单模单偏振特性的影 响,得到了一种宽带 SMSP-MSF,其参数为  $d_{11}$ = 1. 19  $\mu$ m,  $d_{12}$ =1. 26  $\mu$ m,  $d_{13}$ =1. 40  $\mu$ m,  $d_{14}$ =1. 35  $\mu$ m, *d*<sub>15</sub>=2.10 μm, *d*<sub>16</sub>=1.50 μm, *t*=30 nm, 其他光纤参数 与初始值一致。此时,纤芯x偏振模式、缺陷芯模式与 SPP模式折射率相交于某一波长处,三者可实现能量 交换。纤芯x偏振模式与缺陷芯模式发生耦合,x方向 的能量通过SPR效应被金层吸收,从而实现单模单偏 振特性。在波长为1.320 µm、1.388 µm、1.440 µm、 1.490 µm、1.570 µm 和 1.640 µm 处, 纤芯 x 偏振模式 与缺陷芯模式的折射率随波长红移的变化曲线分别相 交,并且与镀金孔产生SPR效应,之后,各缺陷芯模式 与各 SPP 模式在相应波长处分别发生耦合。而通过 在纤芯的两侧沿x方向引入两个大空气孔,使得纤芯x 方向的空气填充率大于v方向,因此,v偏振模式折射 率大于x偏振模式,纤芯y偏振模式不会与缺陷芯模式 和SPP模式发生耦合。

如图 6(a)所示,由于空气孔直径  $d_1 \sim d_6$  依次增大, 相应的缺陷芯的空气填充率也会依次增大,因此,缺陷 芯模式折射率依次减小,各缺陷芯模式与纤芯*x*偏振模 式折射率随波长红移的变化曲线会分别在 6 个波长处 相交。调整镀金孔参数,SPP模式随波长红移的变化 曲线会在纤芯*x*偏振模式与缺陷芯模式所对应的耦合 波长处相交。如图 6(b)所示,纤芯*x*偏振模式共有 6 个 限制损耗峰,在波长为 1.575 µm 处,*x*偏振模式的限制 损耗最大,为 130.60 dB/m,在波长为 1.700 µm 处,*x*偏 振模式的限制损耗最小,为 17.50 dB/m。纤芯 *y*偏振 模式的限制损耗量小,为 17.50 dB/m。纤芯 *y*偏振 模式的限制损耗量小,为 17.60 DB/m。纤芯 *y*偏振 模式的限制损耗量小,为 17.50 dB/m。以 20 dB 的  $R_{\rm PE}$ 值为标准,此光纤可以在 1.300~1.680 µm 波长范围内 实现宽带单模单偏振传输。



图 6 正六边形晶格结构的 SMSP-MSF 的模式折射率实部和偏振模式限制损耗随波长的变化。(a)各模式折射率数值;(b) x和y偏振模式限制损耗

Fig. 6 Real part of mode refractive index and confinement loss of polarized mode for SMSP-MSF with regular hexagonal lattice varying with wavelength. (a) Refractive index of each mode ; (b) confinement loss of *x*-polarized and *y*-polarized modes

#### 3.2 一种正方晶格结构的 SMSP-MSF

在上面的研究基础上,本文提出了一种含镀金孔 且纤芯及缺陷芯相互垂直的正方晶格排布的 SMSP-MSF,其横截面示意图如图 7所示。光纤中的空气孔 采用正方形排布,其中,相邻空气孔间距为 $\Lambda$ ,包层空 气孔直径为 $d_4$ 。纤芯通过忽略位于光纤中心y方向连 续的两个空气孔构成,其中,包围纤芯的第一层空气孔 的直径为 $d_1$ 。忽略纤芯左右两侧x方向的两个空气 孔,形成缺陷芯,其中,包围缺陷芯的第一层空气孔的 直径为 $d_2$ 。同时,在缺陷芯外侧与光纤中心相距z且 正对纤芯中心的位置上引入两个直径为 $d_3$ 的镀金孔, 金层的厚度为t。经过参数优化,最终设置此光纤的参 数为: $\Lambda$ =2.68 µm, $d_1$ =1.55 µm, $d_2$ =1.61 µm, $d_3$ = 1.63 µm, $d_4$ =1.31 µm,z=15.58 µm,t=25 nm。各模 式折射率随波长红移的变化曲线及两偏振模式的限制 损耗如图 8 所示。

如图 8(a)所示,命名为 $n_{PCM}$ 和 $n_{PDM}$ 的线分别表示 纤芯与缺陷芯的有效模式折射率随波长红移的变化曲 线;命名为 $n_{SPPM}^2$ 的线表示 SPP模式的有效模式折射率 随波长红移的变化曲线。忽略y方向排列的两个空气 孔形成纤芯,忽略x方向排列的两个空气孔形成缺陷 芯,纤芯和缺陷芯均存在双折射,且因为二者忽略的空 气孔方向互相垂直,故它们的快慢轴方向相反。由图 8(a)可知, $n_{PCM}^{(y)} > n_{PCM}^{(y)}, n_{PDM}^{(y)} < n_{PDM}^{(x)}, 恰好证明纤芯与缺$ 陷芯的快慢轴方向相反。同时,从图 8(a)中还可以看 $出,在1.55 <math>\mu$ m 处 $n_{PCM}^{(x)}$ 与 $n_{PDM}^{(x)}$ 数值极度接近,纤芯x偏





振模式与缺陷芯x偏振模式的折射率匹配,因此纤芯x偏振模式与缺陷芯x偏振模式会发生耦合,使纤芯x偏振模式的能量转移到缺陷芯中。同时又由于 $n_{\text{FDM}}^{(x)}$ 与 $n_{\text{SPPM}}^{2}$ 的数值在1.55 µm处接近,因此,缺陷芯x偏振模式又与SPP模式发生耦合,在SPR效应作用下,纤芯x偏振模式耦合到缺陷芯的能量会被金层吸收,从而进一步增大了纤芯x偏振模式的限制损耗。而对于纤芯y偏振模式,由于纤芯与缺陷芯y偏振模式的有效模式 折射率数值差距较大,故不能实现耦合,纤芯y偏振模式可以实现低损耗传输。如图 8(b)所示,纤芯x偏振模式在1.55 µm处产生 113.57 dB/m 的损耗峰值,而 纤芯y偏振模式的限制损耗低至2.54×10<sup>-4</sup> dB/m。





Fig. 8 Real part of mode refractive index and confinement loss of polarized mode for SMSP-MSF with square lattice varying with wavelength. (a) Refractive index of each mode; (b) confinement loss of *x*-polarized and *y*-polarized modes

图 9(a)和图 9(b)分别显示了纤芯的*x*偏振模式与 y偏振模式的模场分布。从图 9(a)中可以看出,纤芯*x* 偏振模式会与缺陷芯*x*偏振模式发生耦合,从而增大*x* 方向的限制损耗。从图 9(b)中可以看出,纤芯*y*偏振 模式会保留,能量主要存在于纤芯内,因此,*y*方向的 限制损耗较小。 此光纤的损耗比 $\Gamma$ 和 $R_{PE}$ 如图 10所示。在 1.55 µm处,损耗比 $\Gamma$ 为5×10<sup>5</sup>, $R_{PE}$ 的值为113 dB。这 说明,在工作波长处,此SMSP-MSF的纤芯x和y偏 振模式的损耗差极大,可以在保证光信号良好传输的 前提下,有效增大需要滤除的偏振模式的限制损耗,而 需要保留的偏振模式的限制损耗较小。同时,以



图 9 SMSP-MSF 中不同模式对应的模场分布。(a)纤芯x偏振模式;(b)纤芯y偏振模式 Fig. 9 Mode field distributions of SMSP-MSF for different modes. (a) *x*-polarized core mode; (b) *y*-polarized core mode

20 dB为标准,此光纤可在1.52~1.60 μm的80 nm带 宽范围内更好地实现宽带单模单偏振传输。



表1对本文提出的两种 SMSP-MSF 的特性进行 了对比。本文提出的正六边形晶格结构 SMSP-MSF 纤芯 x 偏振模式、缺陷芯模式和 SPP 模式的能量在 1.320  $\mu$ m、1.388  $\mu$ m、1.440  $\mu$ m、1.490  $\mu$ m、1.570  $\mu$ m 和1.640  $\mu$ m处分别谐振后,其能量被金层吸收并产生 6个损耗峰。以 20 dB 的  $R_{\rm PE}$ 值为标准,各损耗峰叠加 使得此光纤获得了 380 nm 的单模单偏振传输带宽。 本文提出的正方晶格结构的 SMSP-MSF 采用纤芯与 缺陷芯相互垂直的排布方式,使得纤芯与缺陷芯的快 慢轴方向相反。纤芯与缺陷芯 x 偏振模式发生耦合 时,可使两者的 y 偏振模式折射率差值最大化,从而实 现高达 5×10<sup>5</sup>的损耗比  $\Gamma$ 。同时,得益于本文提出的 "耦合-耦合-吸收"滤波机理,以 20 dB 的  $R_{\rm PE}$ 值为标准, 单模单偏振传输带宽仍可达到 80 nm。

表1 两种 SMSP-MSF 的性能比较 Table 1 Performance comparison between two SMSP-MSFs

| Type of SMSP-MSF           | Max loss for wanted polarized core mode $/(dB \cdot m^{-1})$ | Band width /nm | Г                 | $R_{ m PE}/{ m dB}$ |
|----------------------------|--------------------------------------------------------------|----------------|-------------------|---------------------|
| Hexagonal lattice SMSP-MSF | 0.32                                                         | 380            | 395               | 130                 |
| Square lattice SMSP-MSF    | 2.54 $\times 10^{-4}$                                        | 80             | $5 \times 10^{5}$ | 113                 |

本文设计的光纤需要在缺陷芯外侧的空气孔中镀 金。高压微流体化学沉积等技术<sup>[19]</sup>可在MSF的空气 孔中实现纳米级精度的金层涂覆。此技术已广泛应用 于微结构光纤滤波器、分束器等领域,也可应用于本文 提出的 SMSP-MSF。从光纤结构来看,本文所提出的 两种 SMSP-MSF 除在包层构建缺陷芯并在其外侧空 气孔中镀金以外,其内芯及包层多孔结构与其他 SMSP-MSF 相同。因此,常规 SMSP-MSF 使用的端 面耦合或熔接方法<sup>[20]</sup>,例如电弧拼接或 CO<sub>2</sub>激光熔接 方法等,均可用于本文提出的 SMSP-MSF 与其他 MSF 或标准单模光纤的耦合或熔接。

## 4 结 论

通过在包层构建缺陷并在缺陷芯外部添加镀金孔,提出了一种新型SMSP-MSF。此种SMSP-MSF

通过"纤芯与缺陷芯耦合"和"缺陷芯与金缺陷耦合"两 次耦合的能量传递,再利用金缺陷具有的等离子体共 振效应对能量的强吸收作用,可以实现宽带单模单偏 振传输。基于耦合模理论以及 SPR效应,利用全矢量 有限元法,研究了这类光纤结构参数对纤芯两个偏振 模式限制损耗的影响,并最终得到了可支持超宽带单 模单偏振传输的 SMSP-MSF。研究结果表明,对于基 于正六边形晶格的 SMSP-MSF,在1.30~1.68  $\mu$ m波 长范围内,纤芯*x*偏振模式最大的限制损耗为 130.60 dB/m,而纤芯*y*偏振模式的限制损耗小于 0.32 dB/m,可以在 380 nm 的宽带范围内实现良好的 单模单偏振性能。在1.55  $\mu$ m 通信波长处,基于正方 形晶格的 SMSP-MSF 的两偏振方向的限制损耗分别 为 113.57 dB/m 和 2.54×10<sup>-4</sup> dB/m,其损耗比和偏 振消光比分别达到5×10<sup>5</sup>和 113 dB。所提出的超宽带

SMSP-MSF可以用于高功率光纤激光器、光纤陀螺、 光纤起偏器以及相干光通信系统等传输与传感应用 领域。

#### 参考文献

- Tajima K, Ohashi M, Sasaki Y. A new single-polarization optical fiber[J]. Journal of Lightwave Technology, 1989, 7(10): 1499-1503.
- [2] 季敏宁. W-型单模单偏振光纤的设计[J]. 激光杂志, 2001, 22 (3): 24-27.

Ji M N. Design of W-tunneling optical fiber[J]. Laser Journal, 2001, 22(3): 24-27.

- [3] Knight J C, Birks T A, Russell P S, et al. All-silica singlemode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.
- [4] 郑宏军,吴重庆,王健,等.一种四排短轴渐减椭圆空气孔阵列的单模单偏振光子晶体光纤[J].光学学报,2011,31(8): 0806003.
  Zheng H J, Wu C Q, Wang J, et al. A novel single-polarization single-mode photonic crystal fiber with two arrays of four lines of semiminor-axis-decreasing elliptical air-holes[J]. Acta Optica Sinica, 2011, 31(8): 0806003.
- [5] Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers[J]. IEEE Photonics Technology Letters, 2003, 15 (10): 1384-1386.
- [6] 耿鹏程,张伟刚,张珊珊,等.新型宽带单偏振单模光子晶体 光纤的设计[J].光学学报,2011,31(7):0706001.
  Geng P C, Zhang W G, Zhang S S, et al. Design of new type single-polarization single-mode photonic crystal fiber with wide bandwidth[J]. Acta Optica Sinica, 2011, 31(7): 0706001.
- [7] 刘小毅,张方迪,张民,等.基于谐振吸收效应的单模单偏振 光子晶体光纤研究[J].物理学报,2007,56(1):301-307.
  Liu X Y, Zhang F D, Zhang M, et al. Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect[J]. Acta Physica Sinica, 2007, 56(1): 301-307.
- [8] Chen M Y, Sun B, Zhang Y K. Broadband single-polarization operation in square-lattice photonic crystal fibers[J]. Journal of Lightwave Technology, 2010, 28(10): 1443-1446.
- [9] Lee S G, Lim S D, Lee K, et al. Single-polarization singlemode photonic crystal fiber based on index-matching coupling with a single silica material[J]. Optical Fiber Technology, 2011, 17(1): 36-40.

- [10] Geng P C, Zhang W G, Zhang H, et al. Design of broadband single-polarization single-mode photonic crystal fiber based on index-matching coupling[J]. IEEE Photonics Technology Letters, 2012, 24(6): 452-454.
- [11] 李珊珊,郝霞,白晋军,等.偏振可调的太赫兹单偏振单模光 子晶体光纤[J].中国激光,2016,43(9):0901005.
  Li S S, Hao X, Bai J J, et al. Terahertz single-polarization single-mode photonic crystal fiber with tunable polarization[J].
  Chinese Journal of Lasers, 2016, 43(9): 0901005.
- [12] Yang T Y, Ding C, Ziolkowski R W, et al. An ultra-wideband single-polarization-single-mode terahertz photonic crystal fiber [C]//2020 IEEE International Conference on Computational Electromagnetics, August 24-26, 2020, Singapore. New York: IEEE Press, 2020: 21-22.
- [13] Liu S D, Zhang L, Tian M, et al. Epsilon negative-based, broadband single-polarization single-mode hollow core antiresonant photonic crystal fiber[J]. Optics Express, 2021, 29(10): 15664-15677.
- [14] Yang M, Xu H D, Lin T X, et al. A broadband polarization filter based on liquid crystal core and gold-coated microstructure fiber[J]. Optical and Quantum Electronics, 2021, 53(10): 572.
- [15] 雷晓,任芳,张艺赢,等.面向模分复用的沟槽-纳米孔辅助双 包层弱耦合少模光纤[J].光学学报,2021,41(23):2306003.
  Lei X, Ren F, Zhang Y Y, et al. Trench-nanopore assisted double-clad weakly coupled few-mode fiber for mode division multiplexing[J]. Acta Optica Sinica, 2021, 41(23):2306003.
- [16] 马金英,刘铁根,江俊峰,等.光纤表面等离子体共振传感灵 敏度提高研究进展[J].中国激光,2021,48(19):1906002.
  Ma J Y, Liu T G, Jiang J F, et al. Progress in sensitivity enhancement for optical fibre surface plasmon resonance sensing [J]. Chinese Journal of Lasers, 2021, 48(19): 1906002.
- [17] Tao Y, Jiang M, Liu L, et al. Single-polarization singlefrequency Brillouin fiber laser that emits almost 5 W of power at 1 μm[J]. Optics Letters, 2022, 47(7): 1742-1745.
- [18] 彭芊芊,王弦歌,杨克羽,等.中红外高双折射悬吊芯硫系光 纤的优化及制备[J].中国激光,2022,49(1):0101021.
  Peng Q Q, Wang X G, Yang K Y, et al. Optimization and fabrication of chalcogenide high-birefringence suspended-core fiber in mid-infrared[J]. Chinese Journal of Lasers, 2022, 49(1): 0101021.
- [19] Sazio P J A, Amezcua-Correa A, Finlayson C E, et al. Microstructured optical fibers as high-pressure microfluidic reactors[J]. Science, 2006, 311(5767): 1583-1586.
- [20] Bourliaguet B, Paré C, Emond F, et al. Microstructured fiber splicing[J]. Optics Express, 2003, 11(25): 3412-3417.

## Ultra-Broadband Single-Mode Single-Polarization Micro-Structured Fiber Based on "Coupling-Coupling-Absorption" Mechanism

Zhao Chang<sup>1,3</sup>, Li Jipeng<sup>2</sup>, Yang Hongda<sup>1,3</sup>, Yang Man<sup>1,3</sup>, Yang Qihao<sup>1,3</sup>, Hou Lantian<sup>1,3</sup>, Wang Wei<sup>1,3\*</sup>

<sup>1</sup>School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China; <sup>2</sup>Department of Electrical and Electronic Engineering, Shijiazhuang University of Applied Technology, Shijiazhuang 050081, Hebei, China;

<sup>3</sup>Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao 066004, Hebei, China

#### Abstract

**Objective** The conventional single-mode single-polarization micro-structured fibers (SMSP-MSFs) achieve their SMSP property by coupling the unwanted polarized core mode to the cladding defect mode. This design method has contradicted the requirement on the number of air-hole layers outside the defect core, which further leads to the tradeoff between the confinement loss ratio  $\Gamma$  and polarization extinction ratio. In this paper, a novel kind of SMSP-MSFs based on a "coupling-coupling-absorption" mechanism is proposed for the first time to the best of our knowledge. In order to construct the proposed SMSP-MSFs, some gold-coated holes are introduced outside the cladding. The energy in unwanted polarized core mode is firstly transferred to the gold-coated areas through double coupling, namely, coupling from core to defect and coupling from defect to gold-coated area. Then, it is strongly absorbed in the gold-coated area by surface plasmon resonance. As a result, SMSP-MSFs with broadband single-mode single-polarization transmission can be achieved.

Methods Based on the above mechanisms, two broadband SMSP-MSFs are proposed. The first SMSP-MSF has a regular hexagonal lattice. The birefringence is introduced in the core by symmetrically enlarging two air holes around the core. In the cladding, air holes at the middle of every side of the fourth hexagonal air hole ring are reduced to different diameters to form six defect cladding cores. Besides, six air holes with different sizes are drilled outside the cladding, and then they are coated with a layer of gold of different thicknesses. By optimizing the structural parameters of the SMSP-MSF, the energy of the x-polarized core mode can be coupled to the gold's surface plasmon polariton (SPP) mode through the defect core mode at multiple wavelengths, due to the resonance among those modes. Then, the energy is strongly absorbed by the SPP mode, which results in a great increase in the loss of the x-polarized core mode. For this SMSP-MSF, the influences of the gold-coated hole's diameter and the gold layer's thickness on the position of the resonant wavelength and the confinement loss of the x-polarized core mode are studied respectively by the full vector finite element method. The second SMSP-MSF has a square lattice with one rectangular inner core and two rectangular defect cores. While the long sides of the core and the defect core are placed along the y and x axes, respectively, the directions of the fast axes of the core and the defect core are perpendicular to each other. When the modal effective index of the x-polarized core mode (which is its fast axis) is adjusted to have a similar value with that of the x-polarized defect core mode (which is its slow axis), the difference between the value of the modal effective indexes of the y-polarized core mode and y-polarized defect mode is still very large. This guarantees strong energy coupling between the core mode and defect mode in the xpolarized direction but very weak coupling between the core mode and defect mode in the y-polarized direction. After the energy in the x-polarized defect core mode is coupled to and absorbed by the SPP mode in the gold-coated air holes, an SMSP-MSF whose x-polarized core mode has large confinement loss but y-polarized core mode can transmit with low confinement loss can be achieved. For this SMSP-MSF, confinement losses for both polarized core modes are numerically computed around 1.55 µm by using the full vector finite element method. The modal field distribution of both polarized core modes is studied. The single-mode single-polarization bandwidth of this SMSP-MSF is analyzed.

**Results and Discussions** For the SMSP-MSF with a regular hexagonal lattice, with the increase in the diameter  $d_{11}$  of the gold-coated hole (Fig. 2) or the decrease in the thickness *t* of the gold layer (Fig. 4), the modal effective index of SPP mode increases gradually. With the increase in the diameter  $d_{11}$  of the gold-coated hole or that in the thickness *t* of the gold layer, the peak value on the loss curve for the *x*-polarized core mode increases first and then decreases (Fig. 3 and Fig. 5). After optimizing the structural parameters for each defect core and each gold-coated hole, six resonant wavelengths are evenly distributed in the whole interested band where the *x*-polarized core mode, defect core mode, and SPP mode resonate. The superposition of the six loss peaks forms a relatively flat and ultra-wide single-mode single-polarization transmission band. For the SMSP-MSF with a square lattice, the *x*-axis is the direction of the fast axis of the core but the

slow axis of the defect cores. Even when the modal effective indexes of the *x*-polarized core mode and defect core mode have similar values, the difference between the modal refractive indexes of the *y*-polarized core mode and defect core mode is still very large. Therefore, the confinement loss ratio and polarization extinction ratio between the *x*-polarized and the *y*-polarized core modes are quite large in the whole interested wavelength range (Fig. 10).

Conclusions In this paper, two novel ultra-broadband SMSP-MSFs are proposed for the first time based on mode coupling mechanism and surface plasmon resonance effect. The influences of the structural parameters of the SMSP-MSFs on both polarized modes' confinement loss are studied. For the SMSP-MSF with a regular hexagonal lattice, the coupling of x-polarized core mode, defect core mode, and SPP mode at multiple wavelengths is realized by introducing six different defect cores in the cladding and constructing six different gold-coated areas outside the cladding. The x-polarized core mode, defect core mode, and the SPP modes resonate simultaneously at 1.320 µm, 1.388 µm, 1.440 µm, 1.490 µm, 1.570 µm, and 1.640 µm. The energy in the x-polarized core mode is transferred out and absorbed by the SPP mode in a wide wavelength band efficiently. This results in an SMSP-MSF with a single-mode single-polarization wavelength band of larger than 380 nm. For the SMSP-MSF with a square lattice, the fast axis of the core and the defect core are perpendicular to each other. By this mechanism, strong coupling between the x-polarized core mode and x-polarized defect core mode, as well as weak coupling between the y-polarized core mode and y-polarized defect core mode, can be achieved at the same time. After optimization of the structural parameters, the x-polarized core mode shows a confinement loss of 113.57 dB/m at 1.55  $\mu$ m, while the y-polarized core mode's confinement loss is only 2.54  $\times$  10<sup>-4</sup> dB/m. The confinement loss ratio and polarization extinction ratio of the square-latticed SMSP-MSF can reach as high as  $5 \times 10^5 \ \pi 113 \ \text{dB}$ , respectively. The two SMSP-MSFs proposed in this paper can be used in the areas of fiber sensors, fiber optic gyroscopes, in-line polarizers, coherent optical communication systems, etc.

**Key words** fiber optics; micro-structured fiber; single-mode single-polarization; mode coupling; surface plasmon resonance; polarization extinction ratio